Deriving Upwinding, Mass Lumping and Selective Reduced Integration by Residual-free Bubbles

نویسندگان

  • LEOPOLDO P. FRANCA
  • ALESSANDRO RUSSO
چکیده

We show that three well-known \variational crimes" in nite elements { upwinding, mass lumping and selective reduced integration { may be derived from the Galerkin method employing the standard polynomial-based nite element spaces enriched with residual-free bubbles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mass Lumping Emanating from Residual-free Bubbles

A nodally exact scheme is derived for a model equation in 1D involving zeroth and second order terms. The method is derived using residual-free bubbles in conjunction with the Galerkin approximation. It is shown that this approach leads to the mass lumping scheme for su ciently small mesh sizes. 1. The residual-free bubbles approach. The usage of the Galerkin method enriched with bubble functio...

متن کامل

Further Considerations on Residual-free Bubbles for Advective-diffusive Equations

We further consider the Galerkin method for advective-diiusive equations in two-dimensions. The nite dimensional space employed is of piecewise polynomials enriched with residual-free bubbles (RFB). We show that, in general, this method does not coincide with the SUPG method, unless the piecewise polynomials are spanned by linear functions. Furthermore a simple stability analysis argument displ...

متن کامل

Design of Galerkin Generalized Least Squares Methods for Timoshenko Beams Grosh and Pinsky Ggls Methods for Timoshenko Beams

1 Abstract A class of nite element methods, the Galerkin Generalized Least Squares methods, are developed and applied to model the steady{state response of Timoshenko beams. An optimal method is designed using a linear interpolation of the response such that there is zero nite element dispersion error. The classical method of selective reduced integration and a modiied version of selective redu...

متن کامل

Explicit Runge-Kutta Residual Distribution

In this paper we construct spatially consistent second order explicit discretizations for time dependent hyperbolic problems, starting from a given Residual Distribution (RD) discrete approximation of the steady operator. We explore the properties of the RD mass matrices necessary to achieve consistency in space, and finally show how to make use of second order mass lumping to obtain second ord...

متن کامل

Global and Local Error Analysis for the Residual-Free Bubbles Method Applied to Advection-Dominated Problems

We prove the stability and a priori global and local error analysis for the residual-free bubbles finite element method applied to advection dominated advection-diffusion problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007